### Measurements of W Boson Mass and Width

- Electroweak constraints on the Standard Model
- New W mass from CDF
- Predictions for the Higgs
- Measurements of the W width from the Tevatron
- Future prospects



William Trischuk Toronto/CDF May 21, 2007

### **The Electroweak Standard Model**

• The Higgs mechanism provides an elegant prediction for the W mass



 $\Delta r$ : O(3%) radiative corrections dominated by *tb* and Higgs



• With ultimate precision can set limits on other new particles, X, in loops

### **Radiative Corrections to the W Mass**

Radiative corrections are dominated by the top quark and Higgs Boson

$$(m_W - 80.380) = 0.526 \left[ \left( \frac{m_t}{174} \right)^2 - 1 \right] - 0.054 \ln \left[ \frac{m_H}{100} \right] + f(\Delta \alpha_{EM}, \Delta \alpha_s, m_Z, \dots)$$

- $\delta m_t pprox$  1.8 GeV  $\Rightarrow$  11 MeV shift to  $m_W$
- $\delta(\alpha_{EM}, \alpha_{S}, m_{Z})$  $\Rightarrow \approx \text{ few MeV (each) on } m_{W}$
- W mass uncertainty currently dominates this relationship
- $\delta m_W = 11 \text{ MeV}$  $\Rightarrow 19 \text{ GeV on } 100 \text{ GeV Higgs}$

| $m_W$          |
|----------------|
| (MeV)          |
| $80440 \pm 51$ |
| $80336 \pm 67$ |
| $80270 \pm 55$ |
| $80416 \pm 53$ |
| $80433 \pm 79$ |
| $80483 \pm 84$ |
| $80376 \pm 33$ |
| $80454 \pm 59$ |
| $80392 \pm 29$ |
|                |

#### W Production at a Hadron Collider



• Combine kinematics to form the *transverse* mass:

$$m_T = \sqrt{2 p_T(l) p_T(v) \{1 - \cos[\phi(l) - \phi(v)]\}}$$

$$m_T = \sqrt{2 p_T(l) |\vec{p}_T(l) + \vec{u}_T| \{1 - \cos[\phi(l) - \phi(v)]\}}$$

- Sensitive to underlying event  $\equiv |\vec{u}|$  to first order

# W Mass Strategy



#### **Vector Boson Event Selection**

- Select clean W and Z samples
  - Minimize kinematic bias
- Inclusive charged lepton triggers ( $p_t > 18 \text{ GeV}$ )
- Final analysis requires:

- 
$$E_T(e) > 30 \text{ GeV} \text{ or } p_T(\mu) > 30 \text{ GeV}$$

- W boson selection requires:
  - $ec{u} <$  15 GeV and  $ec{E}_T >$  30 GeV
- Z boson selection requires two charged leptons

| Sample                     | Candidates |  |  |
|----------------------------|------------|--|--|
| $W \rightarrow e v$        | 63964      |  |  |
| $W 	o \mu  u$              | 51128      |  |  |
| $Z \rightarrow e^+e^-$     | 2919       |  |  |
| $Z \rightarrow \mu^+\mu^-$ | 4960       |  |  |

- $200 \text{ pb}^{-1} \text{ sample}$
- 1/12 <sup>th</sup> of data on tape
- Current result includes more W bosons than all four LEP experiments combined

## **Tracker Calibration**

- Momentum scale calibration
- Largest systematic for muons
- Constrain/Calibrate with

$$-J/\psi \rightarrow \mu^+\mu^-$$

$$-\Upsilon(1S) \rightarrow \mu^+\mu^-$$

• Cross-check with  $Z \rightarrow \mu^+ \mu^-$ 







## **EM** Calorimeter Calibration

- In-situ EM calorimeter calibration
- Using  $W \rightarrow ev$  electrons
- Material tuned to 2.5 parts in 10<sup>4</sup>
- Also EM linearity at a similar level



$$m_Z^{\mathrm{PDG}} = 91188 \pm 2 \; \mathrm{MeV}$$



• More than  $\sqrt{N}$  improvement since previous measurement

• Tune/constrain calorimeter resolution on Z and E/p  $\Rightarrow \Delta m_W = 9$  MeV

### **Hadronic Recoil Calibration**

• Balance hadronic recoil against  $Z \rightarrow l^+ l^-$ 



• Calibrate scale along  $\eta$ -axis

$$\Delta m_W = 9 \text{ MeV}$$

- Tune resolution on both projections
  - Low *u* underlying event(s)
  - High u jet-like behaviour

$$\Delta m_W = 7 \text{ MeV}$$



### **Recoil Model Checks**

- Apply the model to  $W \rightarrow l v$
- Recoil projection along charged lepton:  $u_{||}$ 
  - Directly affects m<sub>T</sub>
  - Sensitive to lepton removal, recoil scale and resolution and W decay kinematics





- Recoil distribution sensitive to recoil scale, resolution and input W boson  $p_T$  distribution
- Sensitive to non-trivial kinematics

#### **W Boson Production**

- Transverse mass shape sculpted by longitudinal momentum
- Dominated by parton distribution functions
  - CTEQ provides Error PDFs
  - 90 % coverage of input data
- $\Delta m_W = 11 \text{ MeV}$



- Lineshape prediction requires model of
  - Gluon radiation (RESBOS, NLO QCD)  $\Delta m_W = 3 \text{ MeV}$
  - Photon radiation (int and ext) (WGRAD, NLO QED)  $\Delta m_W = 12 \text{ MeV}$

## W Transverse Mass Fits



Combined they give a result of

$$m_W = 80417 \pm 34(stat) \pm 34(sys)$$
 MeV  $P(\chi^2) = 7\%$ 

# W Transverse Mass Uncertainties

| $m_T$ Systematic (MeV) | Electrons | Muons | Common |
|------------------------|-----------|-------|--------|
| Lepton Scale           | 30        | 17    | 17     |
| Lepton Resolution      | 9         | 3     | 0      |
| Recoil Scale           | 9         | 9     | 9      |
| Recoil Resolution      | 7         | 7     | 7      |
| Lepton Removal         | 8         | 5     | 5      |
| Backgrounds            | 9         | 9     | 0      |
| $p_T(W)$ model         | 3         | 3     | 3      |
| Parton Distributions   | 11        | 11    | 11     |
| QED radiation          | 11        | 12    | 11     |
| Total Systematic       | 39        | 27    | 26     |
| Statistical            | 48        | 54    | 0      |
| Total Uncertainty      | 62        | 60    | 26     |

Combined electron and muon uncertainty of 48 MeV

# Other W Mass Fits



Combination of all six fits gives a result of

$$m_W = 80413 \pm 48(stat + sys)$$
 MeV  
 $P(\chi^2) = 44\%$ 

#### First Mass Result from Tevatron-II

- Blinded by 100 MeV random offset until analysis finalised
- Different fits of same lepton flavours highly correlated

| Fit (MeV)      | Result         | χ <sup>2</sup> /DoF |
|----------------|----------------|---------------------|
| Electron $m_T$ | $80493 \pm 48$ | 86/48               |
| Electron $p_T$ | $80451 \pm 58$ | 63/62               |
| Electron $E_T$ | $80473 \pm 57$ | 63/62               |
| Muon $m_T$     | $80349 \pm 54$ | 59/48               |
| Muon $p_T$     | $80321 \pm 66$ | 72/62               |
| Muon $E_T$     | $80396 \pm 66$ | 44/62               |

- Combine results from six fits
- Account for both statistical and systematic correlations



- Best single-experiment measurement
- Publication(s) ready for submission

## **Implications for the Standard Model**

• Current state of  $m_t, m_W, m_H$  plane



- m<sub>W</sub> up from 80392 to 80398 MeV
- Uncertainty from 29 to 25 MeV
- SM prediction for Higgs from:

$$85^{+39}_{-28} \text{ GeV} \Rightarrow 76^{+33}_{-24} \text{ GeV LEPEWG}$$

- The 95%CL upper limit on  $m_H$  drops from 199 to 182 GeV
  - Includes direct search lower bound and recent top mass

#### W Width Measurement

- W width tests Electroweak SM
  - W mass sensitive to  $\Gamma_W$

$$\Delta m_W \approx \Delta \Gamma_W / 7$$

- $\Gamma_W$  from same dataset(s) as  $m_W$
- Focus on high  $m_T$  region
  - Most sensitive to  $\Gamma_W$
  - Important systematics include
    - \* Charged lepton resolution
    - \* Backgrounds
    - \* W recoil model
- Use 350  $pb^{-1}$

### $\Gamma_W$ Backgrounds





#### CDF II Preliminary (350 pb<sup>-1</sup>)



## Fits for W Width



Combined they give a result of

$$\Gamma_W = 2032 \pm 71(stat + sys)$$
 MeV  $P(\chi^2) = 20\%$ 

### W Width Results

- Study similar systematics
- Constrain from control samples

| $\Gamma_W$ Uncertainty (MeV)                                                                                             | e                                                | μ                                         | Common                                 |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------|----------------------------------------|
| Lepton Scale Lepton Resolution Simulation Recoil Lepton ID Backgrounds $p_T(W)$ model Parton Distributions QED radiation | 21<br>31<br>13<br>54<br>10<br>32<br>7<br>16<br>8 | 17<br>26<br>0<br>49<br>7<br>33<br>7<br>17 | 12<br>0<br>0<br>0<br>0<br>0<br>7<br>16 |
|                                                                                                                          |                                                  | I                                         | I                                      |
| Total Systematic                                                                                                         | 78                                               | 70                                        | 23                                     |
| Statistical                                                                                                              | 60                                               | 67                                        | 0                                      |
| Total Uncertainty                                                                                                        | 98                                               | 97                                        | 23                                     |
|                                                                                                                          |                                                  |                                           |                                        |

- Combine channels
  - \* Account for correlations

### • SM prediction $\delta\Gamma_W \approx 2~{ m MeV}$



- Pushing to a new level of precision
- Publication in preparation

# W Mass Prospects at CDF

- Only analysed 1/12<sup>th</sup> of data currently on tape
- Before this result we were projecting 20-30 MeV W mass syst. limit



- Beginning analysis of full dataset
- ⇒ W mass uncertainty of 25 MeV (stat+sys) possible
- Ultimately CDF should get to a 15-20 MeV overall uncertainty

# **Longer Term Outlook**

- Beyond ≈ 25 MeV mass measurement(s?) at Tevatron
- ATLAS beginning to study O(10 MeV) production systematics
- Should expect sub-10 MeV mass measurement(s) from LHC
- ILC will presumably do even better
- Hopefully cross-checking Standard Model prediction
  - Having observed Higgs, or analog, and measured mass

| Contribution                     | $\delta m_W$ |
|----------------------------------|--------------|
| $\delta \mathit{m}_H = 10~GeV$   | -5.5         |
| $\delta \mathit{m}_t = 1 \; GeV$ | +6.1         |
| $\delta \mathit{m}_Z =$ 2.1 MeV  | +2.6         |
| $\delta \alpha_{EM} = 0.00036$   | -6.5         |
| $\delta \alpha_s = 0.0027$       | -1.7         |

•  $\delta\Gamma_W \approx$  20 MeV feasible at Tevatron

Awramik et al. PRD69, 053006

# **Charged Lepton Fit Uncertainties**

| $p_T 	ext{ (MeV)}$        | Electrons | Muons | Comm |
|---------------------------|-----------|-------|------|
| Lepton Scale              | 30        | 17    | 17   |
| Lepton Resolution         | 9         | 3     | 0    |
| Recoil Scale              | 17        | 17    | 17   |
| Recoil Resolution         | 3         | 3     | 3    |
| Lepton Removal            | 0         | 0     | 0    |
| Backgrounds               | 9         | 19    | 0    |
| $p_T(\overline{W})$ model | 9         | 9     | 9    |
| Parton Distributions      | 20        | 20    | 20   |
| QED radiation             | 13        | 13    | 13   |
| Total Systematic          | 45        | 40    | 35   |
| Statistical               | 58        | 66    | 0    |
| Total Uncertainty         | 73        | 77    | 35   |

#### **Neutrino Fit Uncertainties**

| $ \not\!E_T 	ext{ (MeV)} $ | Electrons | Muons | Comm |
|----------------------------|-----------|-------|------|
| Lepton Scale               | 30        | 17    | 17   |
| Lepton Resolution          | 9         | 5     | 0    |
| Recoil Scale               | 15        | 15    | 15   |
| Recoil Resolution          | 30        | 30    | 30   |
| Lepton Removal             | 16        | 10    | 10   |
| Backgrounds                | 7         | 11    | 0    |
| $p_T(W)$ model             | 5         | 5     | 5    |
| Parton Distributions       | 13        | 13    | 13   |
| QED radiation              | 9         | 10    | 9    |
| Total Systematic           | 54        | 46    | 42   |
| Statistical                | 57        | 66    | 0    |
| Total Uncertainty          | 79        | 80    | 42   |

